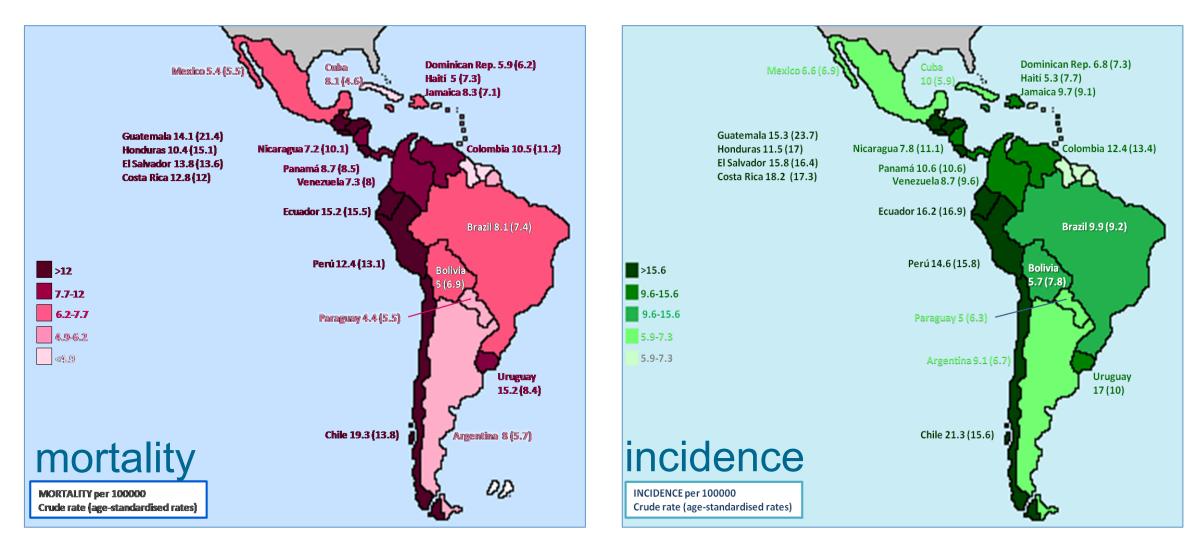


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No GA825832

Gastric cancer in Chile

Molecular and clinical profiling of patients in a high incidence/high mortality country

Mauricio P. Pinto, PhD



Gastric Cancer in Chile

- Facts & Figures
- Gastric Cancer Task Force One
- Clinical profiling
- Molecular profiling
- Molecularly-based stratification
- Future challenges

legacy GC mortality and incidence in Latin America

Garrido M. Journal of Cancer Therapy 2016; 7, 1-12.

GC is the leading cause of cancer death in Chile

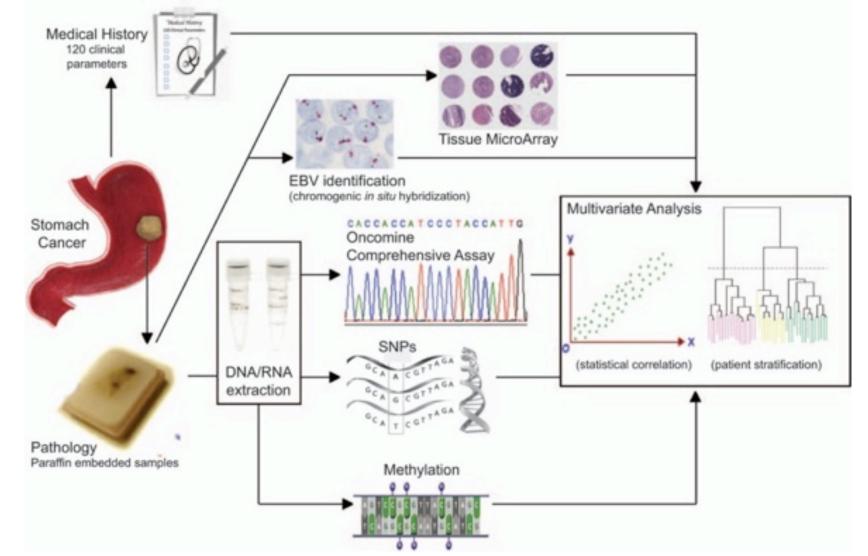
Variable	Chile	China	S. Korea
Incidence (per 100,000/year)	15.6	19.5	35.8
Mortality (per 100,000/year)	13.8	13.4	24.3

Chilean population: ~17.5 M >73% is *H. pylori*+ High prevalence of EBV+ Incidence and mortality is higher in males Total GC deaths: >3,300 a year

Caglevic, C., Silva, S., Mahave, M., Rolfo, C., & Gallardo, J. (2016). The current situation for gastric cancer in Chile. Ecancermedicalscience, 10, 707. https://doi.org/ 10.3332/ecancer.2016.707

Yang L, Zheng R, Wang N, et al. Incidence and mortality of stomach cancer in China, 2014. Chin J Cancer Res. 2018;30(3):291-298. doi:10.21147/j.issn. 1000-9604.2018.03.01

Eom BW, Jung KW, Won YJ, Yang H, Kim YW. Trends in Gastric Cancer Incidence According to the Clinicopathological Characteristics in Korea, 1999-2014. Cancer Res Treat. 2018 Oct;50(4):1343-1350. doi: 10.4143/crt.2017.464.



NIH U.S. National Library of Medicine ClinicalTrials.gov	Find Studies ▼	About Studies ▼	Submit Studies 🔻	Resources ▼	Abc
Home > Search Results > Study Record Detail					
Chilean Gastric Cancer Task Force (FORCE 1) (FO	RCE-1)				
			ClinicalTrials.gov Ide	ntifier: NCT03158	571

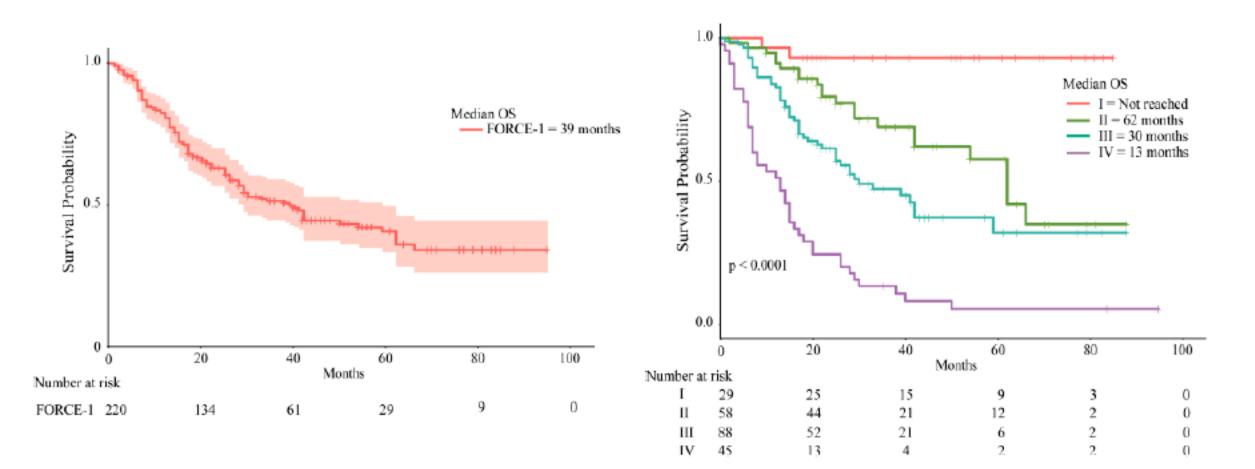
Started in 2015 this project sought to stratify GC patients according to their clinical and molecular charcateristics

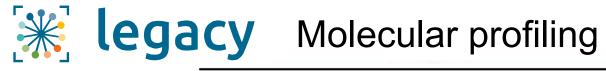
Recruited a total of 224 patients

The Gastric Cancer Task Force One Study (FORCE1)

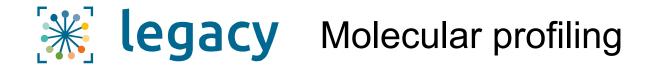
Owen, G. I., Pinto, M. P., Retamal, I. N., ... Garrido, M. (2018). Chilean Gastric Cancer Task Force: A study protocol to obtain a clinical and molecular classification of a cohort of gastric cancer patients. Medicine, 97(16), e0419. https://doi.org/10.1097/MD.00000000010419

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No GA825832


🧩 legacy

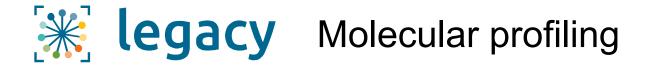

Characteristic	FORCE-1 n (%)	Characteristic	FORCE-1 n (%)	
Gender		Lauren histological type		
Male	142 (63.4)	Intestinal	76 (33.9)	
Female	82 (36.6)	Diffuse	61 (27.2)	
Stage at diagnosis		Mixed	17 (7.6)	
Ι	30 (13.4)	NA	70 (31.3)	
П	57 (25.4)	WHO histological type		
III	88 (39.3)	Adenocarcinoma	171 (76.3)	
IV	49 (21.9)	Undifferentiated carcinoma	9 (4.0)	
ECOG Performance Status		Adenosquamous cell		
0	69 (30.8)	carcinoma	3 (1.3)	
1	69 (30.8)	NA	41 (18.3)	
2	6 (2.7)	Signet-ring cell presence		
≥3	1 (0.4)	No	122 (54.5)	
NA	79 (35.3)	Yes	74 (33.0)	
Location of primary tumor		NA	28 (12.5)	
Distal esophagus and GEJ	49 (21.9)	Comorbidities at diagnosis		
Fundus	12 (5.3)	Two or less	192 (85.7)	
Corpus	86 (38.4)	Three or more	32 (14.3)	
Antrum	54 (24.1)	Age	()	
Pylorus	8 (3.6)	Mean, median (range)	61.4, 62 (26-89)	
Multiple	9 (4.0)		(10 0)	
NA	6 (2.7)			

Cordova-Delgado M, Pinto MP, ..., Garrido M. High Proportion of Potential Candidates for Immunotherapy in a Chilean Cohort of Gastric Cancer Patients: Results of the FORCE1 Study. Cancers (Basel). 2019 Aug 30;11(9):1275. doi: 10.3390/cancers11091275. PMID: 31480291; PMCID: PMC6770659.


Cordova-Delgado M, Pinto MP, ..., Garrido M. High Proportion of Potential Candidates for Immunotherapy in a Chilean Cohort of Gastric Cancer Patients: Results of the FORCE1 Study. Cancers (Basel). 2019 Aug 30;11(9):1275. doi: 10.3390/cancers11091275. PMID: 31480291; PMCID: PMC6770659.

Mutation Gene	Frequency n (%)	Mutation Gene	Frequency n (%)
SNVs		CNVs	
TP53	49 (48.51)	MYC ^a	5 (4.95)
PIK3CA	15 (14.85)	CCND1 ^a	4 (3.96)
VHL	6 (5.94)	CCNE ^a	4 (3.96)
NRAS	7 (6.93)	FGFR2 ^a	4 (3.96)
KRAS	6 (5.94)	ERBB2 ^a	3 (2.97)
BRAF	5 (4.95)	MDM2 ^a	3 (2.97)
APC	5 (4.95)	CDKN2A ^b	2 (1.98)
PTEN	5 (4.95)	KRAS ^a	2 (1.98)
RHOA	4 (3.96)	AKT1 ^a	1 (0.99)
CDKN2A	3 (2.97)	CDK6 ^a	1 (0.99)
CTNNB1	3 (2.97)	GAS6 ^a	1 (0.99)
ATM	2 (1.98)	ZNF217 ^a	1 (0.99)
PIK3R1	2 (1.98)		
PTPN11	2 (1.98)	Fusions	
ERBB3	1 (0.99)	EML4_ALK	4 (4.65)
FBXW7	2 (1.98)	EGFR_EGFR	1 (1.16)
DNMT3A	2 (1.98)	SLC34A2_ROS1	1 (1.16)
SMAD4	2 (1.98)	TBL1XR1_ETV1	1 (1.16)
CDH1	2 (1.98)	TRIM24_BRAF	1 (1.16)
ERBB2	2 (1.98)		* *

Owen, G. I., Pinto, M. P., Retamal, I. N., ... Garrido, M. (2018). Chilean Gastric Cancer Task Force: A study protocol to obtain a clinical and molecular classification of a cohort of gastric cancer patients. Medicine, 97(16), e0419. https://doi.org/10.1097/MD.00000000010419


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No GA825832

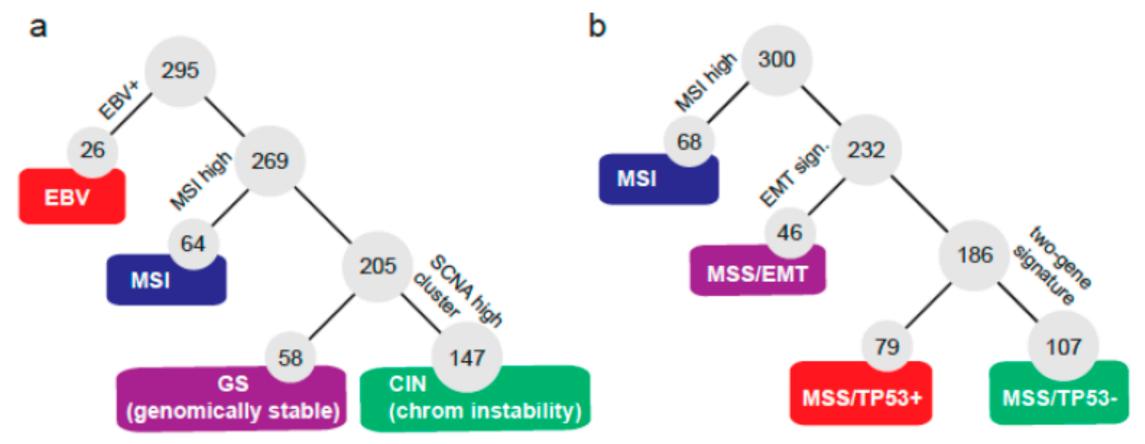
Gene	Aminoacidic Mutational Change	Total Samples <i>n</i>	101	100	30	295	66
		Function	Chilean FORCE-1 n (%)	UHK TCGA n (%)	UTOKIO TCGA n (%)	TCGA Nature 2014 n (%)	Brazil TCGA n (%)
TP53	R273C	Missense	4 (4.0%)	4 (4.0%)	NR	6 (2.0%)	1 (1.5%)
	R213 *	Nonsense	3 (3.0%)	1 (1.0%)	NR	5 (1.7%)	NR
	R175H	Missense	2 (2.0%)	NR	1 (3.3%)	6 (2.0%)	1 (1.5%)
	R248Q	Missense	2 (2.0%)	4 (4.0%)	NR	5 (1.7%)	3 (4.5%)
	R248W	Missense	2 (2.0%)	1 (1.0%)	NR	1 (0.3%)	NR
	P98S	Missense	2 (2.0%)	NR	NR	NR	NR
	Y220H	Missense	2 (2.0%)	NR	NR	NR	2 (3%)
	C242F	Missense	2 (2.0%)	NR	NR	NR	NR

Some TP53 variants in the Chilean population have not been previously reported

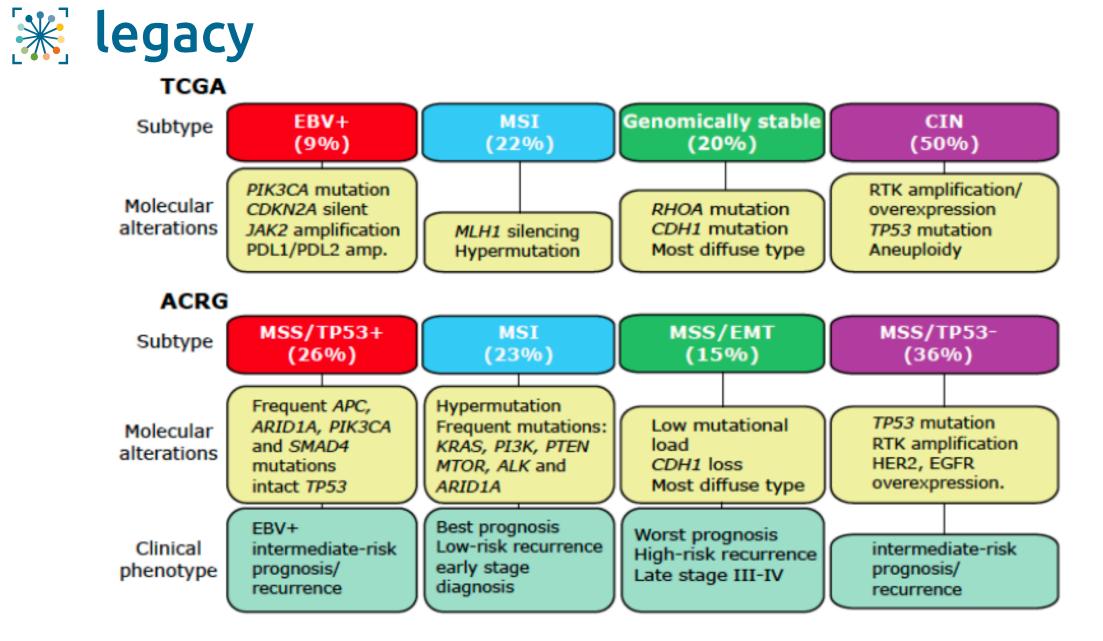
Owen, G. I., Pinto, M. P., Retamal, I. N., ... Garrido, M. (2018). Chilean Gastric Cancer Task Force: A study protocol to obtain a clinical and molecular classification of a cohort of gastric cancer patients. Medicine, 97(16), e0419. https://doi.org/10.1097/MD.00000000010419

Gene	Aminoacidic Mutational Change	Total Samples <i>n</i>	101	100	30	295	66
		Function	Chilean FORCE-1 n (%)	UHK TCGA n (%)	UTOKIO TCGA n (%)	TCGA Nature 2014 n (%)	Brazil TCGA n (%)
	E542K	Missense	4 (4.0%)	NR	NR	5 (1.7%)	2 (3%)
	C378R	Missense	2 (2.0%)	NR	NR	1 (0.3%)	NR
PIK3CA	E545K	Missense	2 (2.0%)	NR	NR	11 (3.7%)	2 (3%)
	R88Q	Missense	2 (2.0%)	NR	NR	4 (1.4%)	1 (1.5%)
	T1025A	Missense	2 (2.0%)	NR	NR	NR	NR
VHL	S68L	Missense	6 (5.9%)	NR	NR	NR	NR
NIDAC	G13V	Missense	5 (5.0%)	NR	NR	NR	NR
NRAS	G12D	Missense	2 (2.0%)	NR	NR	NR	NR
KRAS	G12D	Missense	3 (3.0%)	2 (2%)	NR	7 (2.4%)	1 (1.5%)
BRAF	D594G	Missense	3 (3.0%)	NR	NR	NR	NR
RHOA	Y42C	Missense	3 (3.0%)	NR	4 (13.3%)	3 (1%)	NR
APC	D156fs	Frameshift deletion	2 (2.0%)	NR	NR	NR	NR

Owen, G. I., Pinto, M. P., Retamal, I. N., ... Garrido, M. (2018). Chilean Gastric Cancer Task Force: A study protocol to obtain a clinical and molecular classification of a cohort of gastric cancer patients. Medicine, 97(16), e0419. https://doi.org/10.1097/MD.00000000010419


Given the existence of specific variants on the Chilean population

Can we define molecular subtypes?



GC molecular subtypes

The Cancer genome Atlas

Asian Cancer Research Group

ACRG and TCGA are too expensive and hard to apply into the clinic

Is it possible to elaborate a molecular stratification based on IHC/ISH?

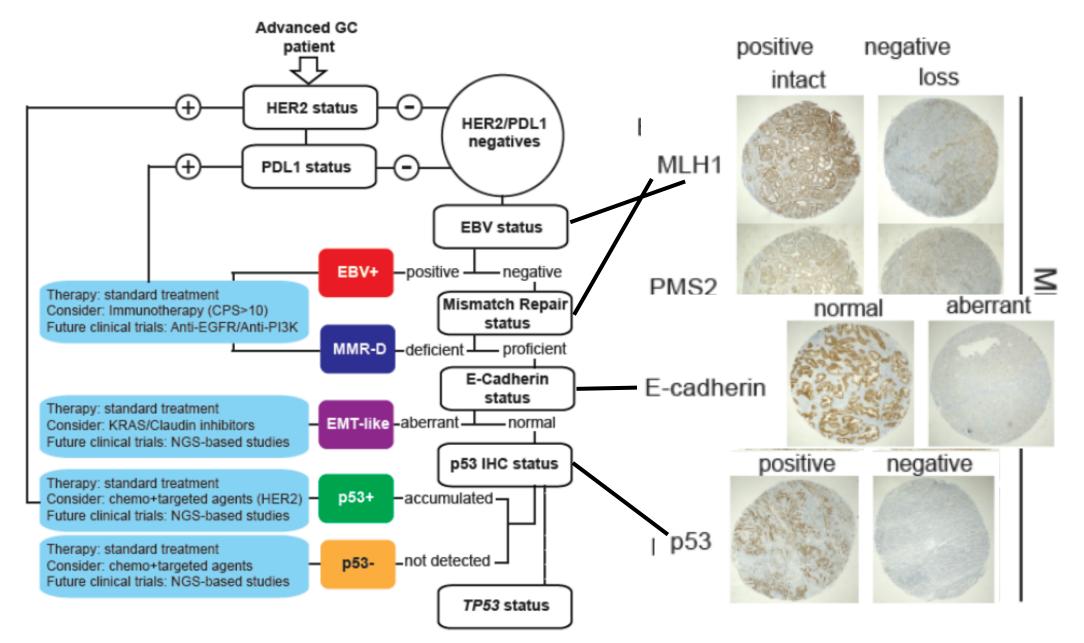
The answer is YES

nature > modern pathology > original article > article

Published: 01 April 2016

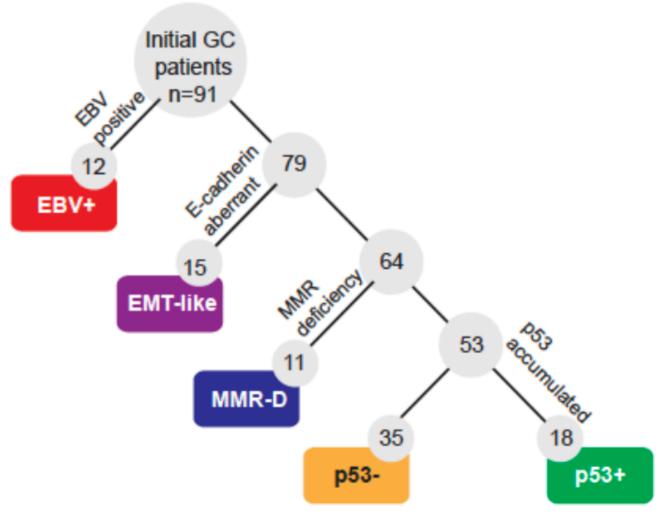
A protein and mRNA expression-based classification of gastric cancer

Namrata Setia, Agoston T Agoston, Hye S Han, John T Mullen, Dan G Duda, Jeffrey W Clark, Vikram Deshpande, Mari Mino-Kenudson, Amitabh Srivastava, Jochen K Lennerz, Theodore S Hong, Eunice L Kwak & Gregory Y Lauwers 🖂

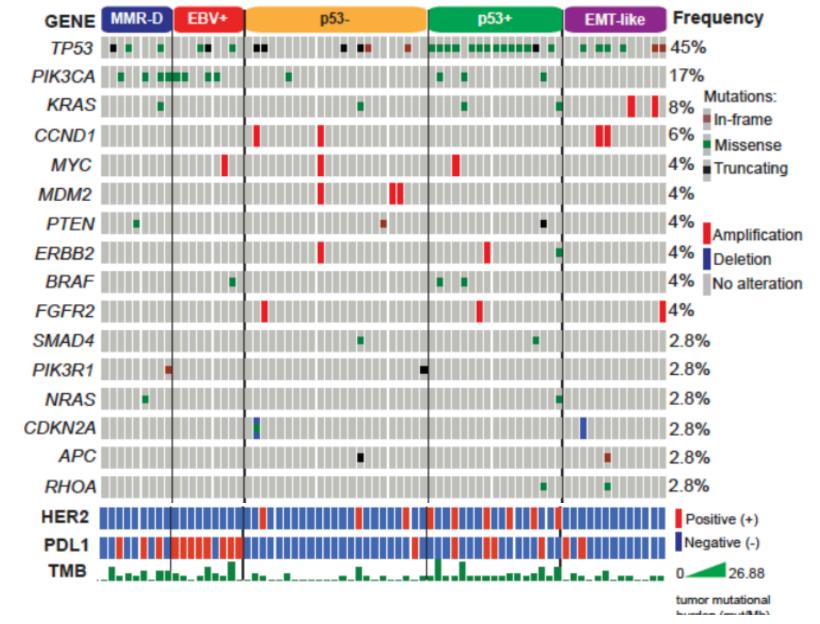

Modern Pathology 29, 772–784(2016) | Cite this article 1629 Accesses | 60 Citations | 17 Altmetric | Metrics

ORIGINAL ARTICLES

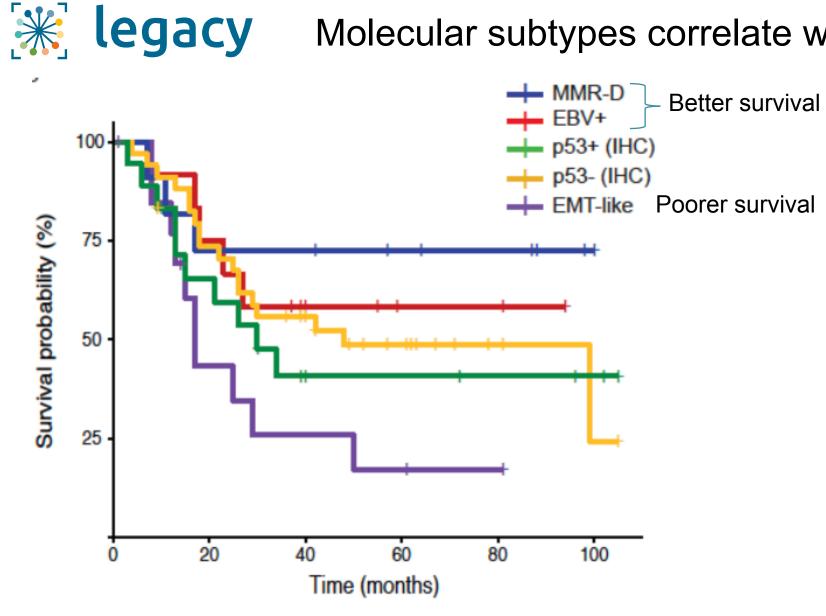
High-throughput Protein and mRNA Expression-based Classification of Gastric Cancers Can Identify Clinically Distinct Subtypes, Concordant With Recent Molecular Classifications


Ahn, Sangjeong MD, PhD^{*,†}; Lee, So-Jeong MD^{*}; Kim, Yonugkeum MD^{*}; Kim, Ahrong MD^{*}; Shin, Nari MD[‡]; Choi, Kyung Un MD, PhD^{*}; Lee, Chang-Hun MD, PhD^{*}; Huh, Gi Yeong MD, PhD[§]; Kim, Kyong-Mee MD, PhD^I; Setia, Namrata MD[¶]; Lauwers, Gregory Y. MD[#]; Park, Do Youn MD, PhD^{*} **Author Information** ⊗

The American Journal of Surgical Pathology: January 2017 - Volume 41 - Issue 1 - p 106-115 doi: 10.1097/PAS.0000000000000756


Pinto, M.P.; Córdova-Delgado, M.; Retamal, I...; Garrido, M. A Molecular Stratification of Chilean Gastric Cancer Patients with Potential Clinical Applicability. Cancers 2020, 12, 1863.

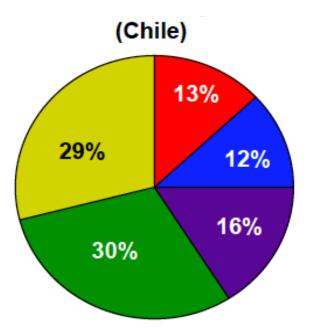
Pinto, M.P.; Córdova-Delgado, M.; Retamal, I...; Garrido, M. A Molecular Stratification of Chilean Gastric Cancer Patients with Potential Clinical Applicability. Cancers 2020, 12, 1863.

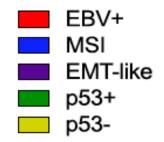


Pinto, M.P.; Córdova-Delgado, M.; Retamal, I...; Garrido, M. A Molecular Stratification of Chilean Gastric Cancer Patients with Potential Clinical Applicability. Cancers 2020, 12, 1863.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No GA825832

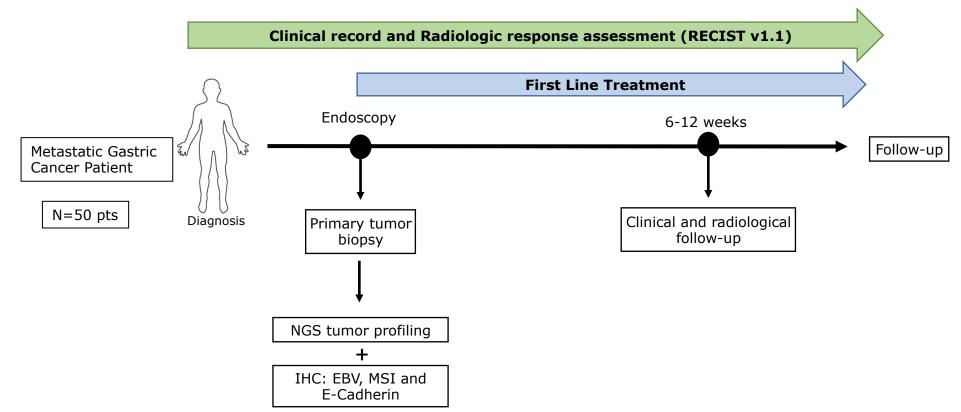
Molecular subtypes correlate with survival




Pinto, M.P.; Córdova-Delgado, M.; Retamal, I...; Garrido, M. A Molecular Stratification of Chilean Gastric Cancer Patients with Potential Clinical Applicability. Cancers 2020, 12, 1863.

his project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No GA825832

Distribution of GC subtypes



Pinto, M.P.; Córdova-Delgado, M.; Retamal, I...; Garrido, M. A Molecular Stratification of Chilean Gastric Cancer Patients with Potential Clinical Applicability. Cancers 2020, 12, 1863.

PONTIFICIA

CATÓLICA

DE CHILE

O (año

de **medicina UC** al servicio

del país

research & medicine

UNIVERSIDAD

Acknowledgements: Gastric Cancer Research Team

Clinical Trials Team

- María Fernanda Fernández, Study Coordinator
- Alejandra Daza, Study Coordinator
- Helda González, Study Coordinator
- Valentina Garate, Study Coordinator
- Bernardita Montt, Study Coordinator
- Liliana Bravo, Regulatory Affairs
- Lisseth Escobar, Study Coordinator
- Cesar Bravo, Study Coordinator
- Karla Ramos, Quality Control
- Daniela Araya, Data Entry
- Joyce Cisternas, Data Entry
- Yorkally Riquelme, Study Coordinator
- Gonzalo Peterli, Administrative Coordinator
- Valeska Borquez, Nurse Technician
- Francisco Gajardo, Administrative Coordinatur

GI Clinical Team

- Marcelo Garrido, GI Oncology
- Arnoldo Riquelme, Gastroenterology
- Allan Sharp, Digestive surgery

Biomarkers and Registry Team

- Ignacio Retamal, PhD Study Coordinator
- Francisco Villanueva, PhD Registry Coordinator
- Gareth Owen, PhD Chief Preclinical Lab
- Valentina Ortiz, Nurse Technician
- Margarita Pizarro, Biochemistry
- Matías Muñoz, Data Entry Senior
- Mauricio Pinto, PhD Protocol and Paper Writter
- María Loreto Bravo, PhD Study Coordinator

Diffussion and Project Manager Team

- Piga Fernandez, Patients Foundation
- EDUMED, Educational web resources
- Wladimir Flores, Project Manager in Oncology

Precision Oncology and Artificial Inteligence Team

- Nicolás Monge, MSc, innovation & AI Specialist
- Miguel Córdova, PhD Genomic and Ph specialist

THANK YOU!!

2020 was crazy

Let's hope 2021 Will bring

PEACE and SANITY

